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Chapter 1

Vectors

1.1 The Geometry and Algebra of Vectors

-2.3)
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plotting those vectors gives
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CHAPTER 1. VECTORS

4. Since the heads are all at (3,2,1), the tails are at

3 0 3 3 3 0 3 1 2 3 —1 4
2| — 2] = |o], 2| — |2] = |o], 2| — |—2| = |4/, 2| — |-1]| = |3
1 0 1 1 1 0 1 1 0 1 —2 3

5. The four vectors A‘é are

(b) AB=1[2-0,-1—(-2)] = [2,1]
(@) AB=[3-23-4] = [}
@ AB= [543 44 =[4 ¢




1.1.

THE GEOMETRY AND ALGEBRA OF VECTORS )

. Recall the notation that [a, b] denotes a move of a units horizontally and b units vertically. Then during

the first part of the walk, the hiker walks 4 km north, so a = [0,4]. During the second part of the
walk, the hiker walks a distance of 5 km northeast. From the components, we get

2 2
b = [5cos45°, 55in45°] = [M, 5\[1 .
2 2
Thus the net displacement vector is
c=a+b= [5\@74+5\@]'
2 2
13 21 [3+2| |5 o
o= [ B - B3] B
| a+b
1 b
2 -2 [2—-(=2)] |4 3
= [-[5)- P 5) -]
b —c
b-c
3 -2 5 : ; ; ;
oa-e= |3 =[] -]
1 d
3 d-c -c

B]Jr{—ﬂ - [01?—32)} = ——

|: 6:| “1t d
—21 a+d

b

11. 2a+3c =2[0,2,0] +3[1,—-2,1] = [2:0,2-2,2-0] + [3-1,3- (=2),3-1] = [3, -2, 3.

12.

3b—2c+d=3[3,2,1] —2[1,-2,1] + [-1, -1, 2]
=[3-3,3-2,3-1]+[-2-1,-2-(=2),—2-1] + [-1,—1,-2]
=1[6,9,—1].
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13. u = [cos60°,sin60°] = [%, @], and v = [c0s210°,sin 210°] = [——3, —%], so that

14. (a) AB=b—a.
(b) SinceO_C}:A_B: wehaveB—C):O_(;fb:(bfa)fb:fa.
(c) AD = —2a.
(d) CF = —20C = —24B = —2(b —a) = 2(a— b).
(e) AC=AB+BC =(b—a)+(-a)=b—2a.
(f) Note that FA and OB are equal, and that DE = —AB. Then

BC+DE+FA=-a— AB+0OB=-a—(b—a)+b=0.

property e. property b.
distributivity ( associativity

15. 2(a—3b) + 3(2b + a) 2a — 6b) + (6b + 3a) = (2a + 3a) + (—6b + 6b) = 5a.

16.

property e.
distributivity (

—3(a—c) +2(a+2b) +3(c —b) —3a+ 3c) + (2a + 4b) + (3¢ — 3b)

prop?r;cy 1%
Y (—3a + 2a) + (4b — 3b) + (3¢ + 3¢)
=—a+b+6c.

17. x—a=2(x—2a)=2x—4da=x—-2x=a—4a= —x=—-3a=x=3a.
18.

x+2a—b=3x+a)—22a—b)=3x+3a—-4a+2b =
x—3x=-a—2a+2b+b =
—2x=-3a+3b =
3

3
—2a—°p.
=875

19. We have 2u+3v =2[1,-1]+3[1,1] =[2-14+3-1,2- (—1)+3- 1] = [5, 1]. Plots of all three vectors are

x » >
Va N v AN , AN
V2 N AN Y A
X 1 > w
N v N v N
\ N N
N >\
1 1 3 4 5 6
7 7 v N 7
s u s AN N
N 7
x 1 >
A
N e v 7
N\ v u N ,
» >
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20. We have —u—2v = —[-2,1] = 2[2,-2] = [-(-2) — 2-2,—-1 — 2 - (—2)] = [-2,3]. Plots of all three
vectors are

N \\
N NN
~
-v J, N ~
~ ~ R
~ ~ - N
N S
N ~ ~ N
N b8 N
NS N N
NN N NS N
~ \ NN
N SN oy < N
N R N
NN N NN N
NS N N NS N N
S . NN
-3 - 1 2
N Q - N N - N ANN -
N NI <N N\
<
N N A y \\\ N
- N N N~
~ ~
NN o~ \\
NN O
N N N
~ ~
N AN N
N
N N\ AN N
3 , NI NI N
21. From the diagram, we see that w = K N A
N N
—2u + 4v. / N = ’ N
/ Y Y N
A S N P 2N
N N 20 , .
N |/ N Y
7/
P w N /\
soN s 0N N ,
s Ny A v N .
X sk X
N , N AN . N
N |/ A v AN Y A
N S
2 . > >
7 N , Y
7 N v N N
X it > >
N N s N
Ve
N v N, N , N
i i N i N i >\
=1 1 2 3 4 5 6
. PRERN PRSAN ,
VA u s N , A ,
X -1 > \/
\ s , .
\ \ ~ \ N
M L ~
22. From the diagram, we see that w = 2u+ A - \
P
3 o N
V. % N
\ - \ u \ ~
A7 TN /\/
-
\ \ ~ \
-
\ T oW ~ \
\ N7 \
\ T <
~
\ \ u
~
AR \
~
\ - \ \ -
~ sl -~
~ \ <
. \ \ N
r \ < \
u \ v \
'l < \
v \ \
-2 -1 1 2 \3 4 s\ 6 7

23. Property (d) states that u+ (—u) = 0. The first diagram below shows u along with —u. Then, as the
diagonal of the parallelogram, the resultant vector is O.

Property (e) states that ¢(u+ v) = cu + cv. The second figure illustrates this.
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24. Let u = [uy,us,...,u,] and v = [v1,va,...,v,], and let ¢ and d be scalars in R.

Property (d):

u+ (—u) = [ug,ug, ..., uy] + (—1ug, ug, ..., up])
= [up, ug, ..., Up| + [—u1, —Usz, ..., —Uy]
= [ug — up, U — Uy .oy Uy — Uy
=1[0,0,...,0]=0

Property (e):

clu+v) =c(fug,ug, ..., uy] + [v1,02,...,0,])
= c([ug + v1,u2 + V2, ..o Uy + Uy))
= [e(ug + v1), c(uz + va), ..., c(u, + vp)]
= [cu1 + cvy, cug + cvg, . . ., cuy, + cvy]
= [cuy, cug, ..., cuy] + [cvr, cva, . . ., cuy]
= cluy, ug, ..., U] + c[v1,v2, ..., vp]
=cu-+cv.

Property (f):

(c+d)yu= (c+d)[u,usz, ..., up]
= [(C+ d)ula (C+d)u27 SRR (C+d)un}
= [cuy + duy, cug + dua, . . ., cu, + duy]
=

CUL, CUg, . . ., ClUy| + [dug, dug, . . ., du,]
= C[u17u27 . ')u"} + d[“lv’”’?v e 7un]
= cu + du.

Property (g):

c(du) = c(dur, uz, . .., up))

clduy, dug, . . ., duy)
[eduq, cdus, . . ., cduy,]
[(ed)uq, (ed)ug, . .., (cd)uy]

cd)[u, ug, . .., Up)
cd)u.

= (
= (
25. u+v=[0,1+[1,1] = [1,0].

26. u+v=[1,1,0] +[1,1,1] = [0,0, 1].
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27. u+v=1[1,0,1,1]+[1,1,1,1] = [0,1,0,0].
28. u+v=1[1,1,0,1,0] +[0,1,1,1,0] = [1,0,1,0,0].

29.
+]0 1 2 3 10 1 2 3
0/0 1 2 3 0/0 0 0O
111 2 30 110 1 2 3
212 3 01 210 2 0 2
313 01 2 310 3 2 1

30.
+]0 1 2 3 4 01 2 3 4
0(0 1 2 3 4 0/0 0 0 0O
111 2 3 40 110 1 2 3 4
212 3 4 0 1 210 2 4 1 3
313 401 2 3/0 3 1 4 2
414 01 2 3 410 4 3 21

31. 24+242=6=0in Zs.
32.2.2.2=3-2=0in Zs.

33.22+142)=2-2=3-1+1=11inZs.

34.341+42+3=4-241=11inZ.

35.2-3-2=4-3+0=0inZ.

36. 3(3+3+2)=4-6+0=0inZ,.

37. 24+ 1+2+424+1=2in%3,2+14+2+2+1=0inZ2+1+2+2+1=3inZs.
38. (3+4)(3+2+4+2)=2-1=2inZs.

39. 8(6+4+3)=8-4=5in Z.

40. 2100 — (210) = (1024)10 = 110 = 1 in Z,,.

41. [2,1,2] + [2,0,1] = [1,1,0] in Z3.

42.2(2,2,1]=2-2,2-2,2-1] =1, 1, 2] in Z3.

43. 2([

44. =2+ (-3)=2+2=41in Zs.
45. 1 =1+ (-5)=1+1=2in Zg
46. z =21 =2in Zs.

47. No solution. 2 times anything is always even, so cannot leave a remainder of 1 when divided by 4.
48. =271 =3 in Zs.
49. 1 =3"14=2.4=3in Zs.

50. No solution. 3 times anything is always a multiple of 3, so it cannot leave a remainder of 4 when
divided by 6 (which is also a multiple of 3).

51. No solution. 6 times anything is always even, so it cannot leave an odd number as a remainder when
divided by 8.
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52.
53.
54.

55.
56.
57.

1.2

CHAPTER 1. VECTORS

r=819=7.9=8inZ1;
r=2"12+(-3))=3(2+2) =2in Zs.

No solution. This equation is the same as 4o =2 —5 = —3 = 3 in Zg. But 4 times anything is even,
so it cannot leave a remainder of 3 when divided by 6 (which is also even).

Add 5 to both sides to get 6z = 6, so that z =1 or x =5 (since 6-1 =6 and 6 -5 =30 = 6 in Zg).
(a) All values. (b) All values. (¢) Al values.

(a) All @ # 0 in Zs have a solution because 5 is a prime number.
(b) a =1 and a = 5 because they have no common factors with 6 other than 1.

(¢) a and m can have no common factors other than 1; that is, the greatest common divisor, ged, of
a and m is 1.

Length and Angle: The Dot Product

. Following Example 1.15, u-v = [_1] . [3} =(-1)-34+2-1=-3+2=-1.

2 1

. Following Example 1.15, u-v = { 3] . [4} =3-44(-2)-6=12-12=0.

-2 6

1 2

.u-v=|2|-|3]| =1-242-343-1=2464+3=11.

3 1

cu-v=32-15+4(—0.6) 41+ (—1.4)- (=0.2) = 4.8 — 2.46 + 0.28 = 2.62.

(1 4
Cueve V2] 0V2 =1-44+v2-(—vV2)+V3-04+0-(-5)=4—-2=2.
V3 0
0 -5
[ 1.12 -2.29
—3.25 1.72
cuev= |0 g = 11202.20 - 325 1.72 4+ 2.07- 4.33 — 1.83 - (—1.54) = 3.6265.
|—1.83] |-154

Finding a unit vector v in the same direction as a given vector u is called normalizing the vector u.

Proceed as in Example 1.19:
Jull = VD2 +22 = V5,

so a unit vector v in the same direction as u is

S SRS U ) B e
I VE | o) T2 )

. Proceed as in Example 1.19:

lufl = /3% +(-2)2 = Vo +4 = V13,

so a unit vector v in the direction of u is

S SRS S 1 I
I U VAT - R -





